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Why collect so much data from sensors, then
Immediately compress it?
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Is full Image reconstruction possible from
iIncomplete Fourier data?
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Why collect so much data from sensors, then
Immediately compress it?

Is full Image reconstruction possible from
iIncomplete Fourier data?

How can knowledge of sparsity be exploited?
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Candes, Romberg, Tao (2004)
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Minimize

[ 1w
Image

subject to

f&) =fl€), ¢EeD

where f, is the discrete Fourier data afitlis the
(restricted) domain of knowledge.
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Suppose we are given
An underdetermined problem
Having a sparse solution
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Suppose we are given
An underdetermined problem
Having a sparse solution

Can we obtain
the unique sparse solution?
a good approximate solution, subject to noise?

Sparse — p.8/30



Let F : C* — C" be the discrete Fourier transform

n—I1
fi=> fre®™ =0, n—1.
k=0

Consider!’ = supp(f) C Z" with |T| < n and

Q) c Z". We defineF;_ : CTl — C to be the
restricted transform

fi=>Y_ fe®™Mrjeq

kel
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Candes, Romberg, Tao studied when

f="= o fo)

with T'=supp(f), can be recovered from

be{ﬂ

jeQCZ”}.

Solution is unique ifz is prime and 7’| < £|9].
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Why? Forn prime, Fr_.q IS
Injective (one-to-one) if7"| < |2
Surjective (onto) ifiT| > ||
Bijective if |T'| = |
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Why? Forn prime, Fr_.q IS
Injective (one-to-one) if7"| < |2
Surjective (onto) ifiT| > ||
Bijective if |T'| = |
Supposef, g are such that
flo = glo and
[supp()I< 3/ and [supphI< 5.
Then [suppf — ¢)|< |92, henceFgp(r—g)—a IS
Injective and therefor¢ — g = 0.
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In addition, the convex optimization problem
n—1
minimize |||y = >  |fi]
k=0

subject to f]g = Frn_af

yields the unique solution.

What if n Is not prime?
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For non-primen, subgroups o¥.” spoil uniqueness.

For example, let = k% and|T'| = k with f;;, = 1 for

j=0,....k—1.Thenf = k- f, so f vanishes on
sets) with |Q2| as large as — k.

Solution:
randomly choosé) and
settle for high probabillity of uniqueness.
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Theorem (Candes, Romberg, Tao) Léte C™ be
supported on an unknown sEétand choosé) C Z"

of size|Q2| uniformly at random. For a given accuracy
parametern, If

T < Cpy - (logn) ™ - 9]

then with probability at least — O(n™"™), the
solution to the convex optimization problem

min ||g|li  s.t. flo = Frnag

IS unique andy = f.
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Ly1-norm minimization with hyperplane constraint
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Ly1-norm minimization with hyperplane constraint
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Ly1-norm minimization with hyperplane constraint

Contrast this withl.,-norm minimization
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Recovery ofr from
Underdeterminedk?| x n systemAz = b
Minimization of |z|; = ). |z

What properties musi have?

What relation must hold between three sizes

T = aflo, || = dim(B), n = dim(x)?
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If the columns ofA are chosen uniformly at random
from the unit sphere of dimension dii@nd

|z]lo < C - [log dim(z)] ™" - dim(b),

whereC' depends weakly on the probability of correct-
ness, then the solution of the same convex optimizatic
problem isz.
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Restricted Isometry Property

Sparse subsets of columnsiok n-matrix A
must be approximately orthogonal

ForeachM c {1,...,n}, let A[M] be thek x | M|
submatrix ofA consisting of columns indexed by!.

Defined, as the smallest number obeying

(1= 6) l|l=]I* < [A[M]z]]* < (1 +6,) [l

for all subsetsM with (M| < s and all vectors:.
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Restricted Isometry Property

Related ta); there isy; o, which is the smallest
number such that

(AM]z) - (AIM2)] < vsoll]| "]

holds for alldisjoint setsM, M’ C {1,...n} of size
not exceeding ands’, respectively, and all vectors
andx’.
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Candes, Tao studied underdetermined, noisy probler
Number of parameters, number of measurements
possiblyn > k.

Assume measuremenjs= X5 + z, with
£ € R" parameters of interest

z € R¥ noise i.i.d. N(, 0?)

They obtain approximatiofi as solution
of linear program.
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The linear program
minimize ||§]|; subject to
[ X" (= XB)[|, < (1=#7) /2logn -0

yields solution3 that with very high probability
satisfies

HB — 6\\2 < C*-2logn - (02 -+ Zmin (@-2,02) )

Compare with omitting the fact@rlog n if the nonzero
locations of3 were known in advance.
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Tropp, Gilbert adapted a greedy algorithm to recover
x from knowledge ofd = (a1, as, ..., a,) andb,
where column vectors,, . . ., a,, have unit norm.

Choose colump; to maximizea;, - b
Let residual; =0 — (aj, - b) aj,

Repeat, for steps= 2,..., ||x||o, picking

columny, to maximizea;, - rs_;

New residual- is obtained by removing frorh
the orthogonal projection dfon the columns
chosen so far
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Claims: compared t@z||; minimization

Faster
Similar convergence properties

Distinctions will be understood through
numerical experience
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Candes, Romberg, Tao interpretation of Shepp-Loga

Blurs distinction between DFT and FT
In tomography and MR, true Fourier data are collectec
For discontinuous functions, DFT and FT very different

FT requires a continuous, rather than discrete (pixel)
representation of image function

Works for piecewise constant, not piecewise
smooth, Images

Recovery of piecewise smooth images from truncate
Fourier data remains an open problem
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Collaboration with Yu Chen (Courant Institue, NYU)

Assume that, aside from discontinuities, available
Fourier data are complete

Recall that discontinuities in function (resp.
derivative) along curves can be represented by
double (resp. single) layer potential

Single and double layer densities can be
discretized as monopoles and dipoles

Orthogonal matching pursuit used in attempt to
recover dipoles
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Shepp-Logan without outer two ellipses
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Shepp-Logan without outer two ellipses
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Shepp-Logan without outer two ellipses
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Prompted by unmet need to recover piecewise smoo
Images from truncated Fourier data

Shows that truncated Fourier data supplies
excellent, recoverable position information

Suggests
Dipoles should not be restricted to grid
Asking how to “connect the dots”

More experimentation needed
More innovation in representation needed
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Li-norm minimization, subject to the constraint of an
underdetermined linear system

Can be highly effective at sparse recovery

Plausible workhorse, due to advances in interior
point methods

Still costly enough to prompt alternatives

The bigger guestions about sparse recovery remain
open

Dantzig selector suggests great opportunity in
sparse estimation problems

What about estimation in nonlinear setting?
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Additional information
Search Google for “L1 magic”

Site http://www.acm.caltech.edu/I1magic
contains links, preprints
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